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FOREWARD

This volume is the first of two, comprising the final report on

Contract AF30(602)-2507. Volume I is primarily limited to an explana-

tion and justification of the theoretical approaches used in the study of

the Interference Aspects of Fresnel Region Phenomena. Volume II pre-

sents the most important results of this study and describes the manner

in which these results can be used to determine the near field charac-

teristics of high gain antennas.

Suggestions of Mr. H. E. Shanks were instrumental to the suc-

cessful completion of several phases of the work, and are gratefuLy

. acknowledged. The assistance of Messrs. M. V. Lopez, G. E. Martes,

and R. K. McFadden in the theoretical and experimental portions of the

study were also of significant value. Messrs. J. J. Hilton and E. E.

Stafford ably performed the computer programming and the associated

T- computations.
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ABS TRACT

if The spatial distribution of energy associated with typical antennas

has been investigated in the region of the forward hemisphere which is

relatively close to the antennas. This region is referred to as the sca-

lar near field region (SNF), and it extends inward to about one antenna

diameter from the aperture plane, and outward to the far field region.

In the SNF region the radial components of field are negligible, and the

fields may be obtained by a scalar formulation; however, the standard

Fresnel or Fraunhofer approximations are not valid throughout this

region.

The study has resulted in a tabulated set of field components from

i" which the value of the SNF of in-phase circular and rectangular aper-

tures can readily be calculated. The apertures' sizes and distribution

functions can be selected arbitrarily. Thus, the results are applicable

to a variety of antennas existing in the field.

The Fresnel-Fraunhofer transition distance has been determined

as a function of azimuth angle, for various aperture distributions. The

transition distance decreases rapidly as the azimuthal angle increases.

At small angles the transition distance increases as the antenna's side-

lobe level is lowered and as its sidelobe taper is decreased. The max-

" imum transition distance varies between somewhat less than L2 /X and

5L 2 A depending upon the antenna's sidelobe level and taper. (L is the

V antenna length and X is the wavelength.) At azimuthal angles which are

large compared with an antenna beamwidth, the effect of the sidelobe

" level and taper diminishes, and the transition distance approaches

L/sin 0 where 0 is the angle from broadside.
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I. INTRODUCTIONr
The increasing complexity and intermingling of radars, communica-

I tions equipment, and other electronic gear, has led to considerable concern

over the mutual RF interference problems present in high-density site

environments. Of considerable importance, in terms of lowering the inter-

ference levels, is proper equipment location and site configuration. A

if sound engineering approach to this problem must be based on reliable field

strength data in the site environment. The purpose of the present program

I" is to provide engineering data and design analysis techniques for the radi-

ated field strengths in regions relatively close to typical antenna structures.

Significant contributions to the study of Fresnel and near zone radi-

ation phenomena have been made by a number of organizations, too numer-

ous for individual mention. The more notable efforts in this area are

listed in the General Bibliography included in this volume. However, past

investigations have not been of sufficient scope to provide definitive results

for the purposes of RFI prediction. Thus, one of the principal aims of the

present program has been to develop simple techniques by which field and

laboratory personnel can readily determine the near fields of arbitrarily-

excited antennas.

The study program had several specific objectives, each related to
Ithe interference properties of the "near" field. As mentioned previously,

v- the primary objective was to theoretically determine the spatial distribu-

tion of energy associated with typical antennas. A second important objec-

tive was to determine the Fresnel-Fraunhofer transition distance, which is

the distance at which the far field approximations can be used to accurately

predict the signal density. Additionally, the effects of operating at nondesign

I
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frequencies and of terrain reflections were touched upon. Also, a study of

4focusing techniques to allow far field pattern measurement in the near field

was initiated. Finally, the theoretical techniques were verified by experi-

I" mental measurements of the on-axis power densities for typical radiating

apertures.

This volume is the first of a two volume final report. It is primarily

limited to an adequate description of the theoretical approaches used in the

* -program, a justification of the approximations used, and the experimental

verification of the results. The second volume is intended to be used as a

handbook for estimating the near field characteristics of typical antennas.

To a large extent, the second volume is comprised of two tables, from

which the near-zone signal strengths of circular and rectangular apertures

i" can be calculated.

The following section discusses in general terms the approach to the

problem and a summary of the results.

]2
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II. APPROACH AND SUMMARY

The first step towards a solution to the near field problem was to

1- establish a suitable mathematical formulation for the radiated fields. The

common practice of reducing the vector problem to a scalar problem by

making suitable approximations to the exact solution was followed. This

step effectively restricts the solutions to the region of space that is exte-

rior to a sphere which just encloses the antenna of interest. It is felt that

this restriction is not severe in view of the fact that electronic equipments

are seldom located within an antenna diameter of each other.

Because of the scalar formulation, the region in which the solutions

for the radiated fields are valid is referred to as the scalar near field (SNF).

- For convenience, it is defined as extending inward to about one antenna di-

ameter from the aperture plane and outward to the far field region. A

more complete description of the approximations made in the basic mathe-

matical formulation, as well as a general discussion of antenna field regions,

is presented in Section IML A.

As indicated previously, one of the principal aims of the study pro-

gram was to develop techniques which allow field and laboratory personnel

to determine the near fields of arbitrarily-excited antennas by fairly simple

methods. To be of widespread value, these techniques must not require the

use of special equipment such as electronic computers, and should yield

the SNF by methods which are about as simple as those used to determine

far field paterns. Achievement of these ends was complicated by a number

of factors:

.r
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(a) While the near and far zone diffraction fields are both

Fobtained by integrating currents over the radiating aperture, the integrals

are, without exception, much more difficult to evaluate in the near zone

ithan in the far zone. This has necessitated the use of high-speed electronic

computers in the near zone investigations.

_ (b) The far field pattern shape is independent of range, while

the near field pattern shape is not; thus, a family of curves is requirod to

describe an antenna's near field, while a single curve suffices to describe

its far field.

(c) The far field patterns of antennas which are identical ex-

cept for size, are identical except for an angular scale factor. However,

the near field patterns of such antennas are not simply related. This

implies it is necessary to perform an independent analysis each time the

antenna size is varied.

To overcome the above difficulties, without severely restricting

either the accuracy or the general utility of the results, several techniques

for reducing the required number of data points were discovered and

incorporated in the present program.

pThe first technique concerned the types of aperture distributions in-

vestigated. For the case of circular apertures, the distribution functions
2 4 6

chosen for study were selected to be of the form I + aIp + a2 P + a3p

where p is the normalized radius and the a's are parameters which con-

" trol the shape of the aperture distribution. By varying the values of a,

this class of functions can be made to closely approximate a wide range

" of distributions which occur in practice. The total near field is given by

4



.7 the sum of the field components arising from each of the four terms in the

aperture distribution. The values of a effect only the magnitudes of the

field components; thus, by calculating the components with each a equated

to unity, a fundamental set of field components is obtained. The SNF of an

- arbitrarily-excited antenna can be calculated from this set by adjusting the

*magnitude of the individual components by the appropriate values of a, and

summing. This approach eliminates the need for treating a large number

* of aperture distributions and insures that the results of the study program

* - will be applicable to most cases arising in practice. An almost identical

approach was used for the rectangular aperture case.

The number of required data points was further reduced by determin-

" - ing the conditions under which the signal densities can be accurately calcu-

lated by use of the far field expressions. It was discovered that the wide

angle fields can be accurately predicted by use of the far field expressions

at distances very much less than the commonly accepted far field distance

given by 2D2 /X.

The analysis from which the transition distance was determined was

based on a criterion which limits the near field strength, in directions in

" which the far field vanishes. This insures that, at distances equal to or

greater than the transition distance, the values of the SNF does not signifi-

cantly differ from the far field value. A number of different types of aper-

ture distributions were studied in this connection. It has been demonstrated

" that the transition distance depends primarily upon the antena's sidelobe

level, the sidelobe taper, and the azimuthal angle to the field point. In

general, as the sidelobe level decreases, the transition distance increases.

As the azimuthal angle increases, the transition distance decreases and

" bbecomes less dependent on the antenna's sidelobe level and taper. It was

I-
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determined that at sufficiently wide angles, the transition distance goes

approximately as D, and the SNF tends towards the envelope of the far
sin 8'

field pattern.

Use"of the far field data at distances greater than the transition dis-

tance greatly reduces the volume in space in which the scalar near field

must be determined, and reduces the number of data points which must be

obtained. In the present program, a 50 percent reduction in the required

number of data points was affected by incorporating this feature.

The greatest saving in the required number of data points was affected

by eliminating the need for independent analyses each time the antenna size

is varied. This was the result of an analysis which established the condi-

tions that permit the prediction of the SNF of an antenna from that of a

similar antenna of different size. It was determined that if the near fields

are compared in u-space (where u = -D sin 0) and at carefully chosen
X 2

values of range (approximately given by constant values of RX/D ), the

differences are insignificant for ratios of antenna sizes as great as sixteen-

to-one.

In the study program, a number of comparisons were made in order

to definitely establish the fact that universal patterns for the SNF can be

constructed. Uniform and 1 - p2 distributions were considered. The

largest ratio of antenna sizes considered was 16:1 (10 and 160X diameter

apertures), and the smallest value of range corresponded to only 0.0150
2

D A/. In each case, the results supported the position that the SNF of a

given antenna allows the prediction of the SNF of antennas of different size.

Thus by making computations for a particular antenna size, and generaliz-

ing the results to antennas of different sizes, the problems of data acquis>.

tion and presentation become manageable.

6



. - By using the above techniques only about 10,000 data points are

required to describe the SNF of circular apertures which radiate pencil

beams. This collection of data suffices for antennas whose distributions

can be approximated as described above and whose size is arbitrary. A

similar number of points is required for rectangular antennas. This data

is tabulated in Volume II of this report.

The following section discusses in more detail the areas of investiga-

tion summarized above.

17
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III. ANALYSIS OF WORK PROGRESS

A. Discussion of Antenna Fields

Three field regions are generally considered to be associated

with an antenna. These are the Fraunhofer or far region, the Fresnel

region, and the near region. These regions are usually defined in terms

of approximations which are made in the integral solution for the diffraction

field. For planar apertures (and hence, antennas whose radiating "aperture"

can be considered planar), such as shown in Figure 1, the diffraction field

is given by:

U(j 1(,1 -1)r _:_ -

Aperture r r

where

F(e, r) is the aperture distribution

k = Zir/k is the wave number

i is a unit vector in the z-directionz

r I is a unit vector in the direction of r.

J1

As defined by Silver I the various field regions are:

1. Near Field Region. That region in the immediate neigh-

borhood of the aperture in which no simplifying approximations can be made

in Equation (1).

8
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2. Fresnel Region. In the Fresnel region several approxi-

mations are made; they are:

k + 7i F + j = jk(l + coso 0)

r = R in the amplitude term

r = R - g sin e cos - isin I sin [12 + 1 2

- ( sin I cos + il sin 0 sin 41)Z] in the phase term.

Substituting the above approximations into Equation (1) yields for the

Fresnel field,

uejk sin ( sin 0 + tj sin 0)
2R Aperture

.j [0 2 + ?I sin2 0( coo 40 + ?I sin 40)dd

3. Fraunhofer Region. The approximations in the Fraun-

hofer region are the same as in the Fresnel region except for the approxi..

mation for the phase term. The phase term is taken to be

r = R - 4 sin 0 coon* - il sin 0 sin *

and the Fraunhofer field is

10
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Tp= (1 +cos 0) -  R Aperture F(4'T) eJksin0cs + lsin) d4dvj

Care must be exercised in using Equations (1) to (3) for pre-

dicting the field associated with a radiating aperture. Besides the approxi-

mations listed above, approximations are made in the reduction of the

I .vector solution for the field to a scalar solution as written in Equation (1).

These approximations effectively discard the radial components of the field.

TThese components give rise to stored energy which can be appreciable in

the vicinity of the aperture, but which decays rapidly as the distance from

Tthe aperture is increased. Although little work has been done toward esti-

mating the magnitude of the reactive fields, they are generally considered

ito be negligible in a region outside of a sphere bounding the aperture.

Therefore, Equation (1) can be considered to give only qualitative results

when applied to points interior to such a sphere.

IThe term "Fresnel region" is often used to encompass the

entire region between the radiating aperture and the far field. The fact

that the Fresnel approximations are not valid over this entire region has

led to a large measure of confusion. In order to clarify the situation for

the purpose of the present program, it is necessary to recognize the nature

r- of and reasons for the various approximations. Both the Fresnel and

Fraunhofer approximations are intended to render the integral solutions

1- for the field amenable to simplified analysis and manipulation. In particu-

-lar, when the Fraunhofer approximations are used in connection with a

- line source, the radiated field and the aperture distribution are related by

a Fourier transformation. This is of great value when it is desired to

synthesize a given Fraunhofer pattern. The Fresnel approximations do not

. II
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yield such a marked advantage, however, and only slightly simplify the form

of the integrals. If the integrals are to be evaluated by the use of electronic

computer techniques, as they were in the present program, the simplifica-

tions introduced by the Fresnel approximation are not great enough to

warrant their use. Therefore, these approximations were not used in the

program. The defining integral for the fields were taken to be

U = (1 + cos 0) 3 F(g, ) - dd (4
SAperture r

where no approximation for r were made.

Since Equation (4) yields a better approximation to the field than

does the Fresnel formulation, it is improper to refer to the field calculated

by use of Equation (4) as the Fresnel field. In order to clearly distinguish

this field, it will be referred to as the scalar near field (SNF).

The region in which the scalar near field accurately represents

the true field of an antenna extends from distances which are such that the

radial components of field are negligible to infinity. However, since an-

tennas are usually designed on the basis of the Fraunhofer approximations,

it is desirable to consider the scalar near field as extending only to a

distance at which these approximations are valid. The transition distance

between the scalar near field and the Fraunhofer field is discussed in

T Section I. B.

I In the region interior to the scalar near field, the radial com-

ponents of field (and therefore the stored energy) are not negligible. To

distinguish the field in this region from the scalar near field, it will be

. 12



I

referred to as the aperture field. To determine the transition distance

Ibetween the aperture field and the scalar near field, the radial compo-

nents of field (about which little is known) must be investigated. Although

speculative, it is felt that this transition distance is approximately one

antenna diameter from the aperture.

To summarize: In the present program the fields associated

with an antenna are divided into three categories. They are defined below:

1 1. Aperture Field. The field in the immediate neighbor-

hood of the aperture in which a scalar solution for the field is not neces-

sarily valid. It extends outward from the aperture to a distance which is

of the order of an antenna diameter.

2. Scalar Near Field. The field which exists in the region

between the aperture field and the far field. A scalar solution is valid in

this region; however, geometrical approximations for the distance term

are not valid, especially near the inner boundary of this region.

1 3. Far Field. The field which extends from the outer

boundary of the scalar near field to infinity. In the scalar solution, the

approximation is made that rays emanating from all points on the aper-

j ture and traveling to a far field point travel along parallel paths.

I

I

I
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J B. Scalar Near Field to Far Field Transition Region

At sufficiently great distances, the scalar near field and Fresnel

J formulations are essentially identical. Therefore, the transition region

between the scalar near field and the far field is the same as that between

the Fresnel and far fields. The Fresnel-Fraunhofer transition distance is

commonly taken to be 2L /A where L is the longest linear dimension of

j the aperture and ) is the wavelength. Under this definition, the aperture

appears to have a maximum phase error of ir/ 8 at its extreme edge. This

j criterion is extremely simple to apply, for under it all antennas which have

the same maximum dimension have the same Fresnel-Fraunhofer transition

j distance.

I However, to be meaningful from an interference viewpoint, the

criterion for the transition distance should be based on limiting the degra-

I dation in the radiation pattern. The degree of degradation depends on the

aperture shape and the distribution function, as well as on the antenna size

I and the distance between the antenna and the observation point. This has

been demonstrated in the literature for the case of on-axis fields.,3 A

I transition distance criterion based upon the on-axis field is not general

enough, however, since in many applications (including interference) the

I off-axis power distribution is of extreme importance.

Experience indicates that the first significant effect of moving

into the Fresnel field is a filling of the nulls in the Fraunhofer radiation

pattern. This is accompanied by a slight increase in the level of the side-

lobes immediately adjacent to the main beam. Further in the Fresnel field,

the sidelobes are gradually enveloped by the main beam. At a given dis-

tance, theme effects become more prominent as the antenna's sidelobe level

14
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is lowered, indicating that the transition distance moves outward as the

I distribution becomes tapered. This general behavior is substantiated by
4

the calculations of Hansen and Bailin, and is illustrated in Figure 2. Fig-

I ure 2 shows the calculated Fraunhofer pattern and the pattern shape at a

distance R = 2L2 /X, of a very low sidelobe (-50 db) Tchebyscheff array

I made of nine elements. It is noted that the first sidelobe is completely

enveloped by the main beam at the distance R = 2L2 /X, which corresponds

I to the standard far field distance. However, the levels of the succeeding

sidelobes are not substantially altered. Although a -50 db Tchebyscheff

array is an extreme case and of limited practical importance, it serves

to point out that the transition distance, under certain conditions, can be

greater than 2L 2 A. It also shows that the accuracy of the Fraunhofer

approximations, with respect to predicting the field strength at a point,

depends upon the asimuthal location of the point, as well as the distance

between the point and the antenna.

Since null-filling is the first significant effect of moving into

the Fresnel field, it is logical to base the transition distances on a crite-

rion which limits the degree to which the various nulls are filled. Under

this criterion, the Fresnel field in the direction of the nth far field sero

(numbering from the main beam outward) is limited to a percentage K, of

the nth sidelobe level. Thus, by determining the transition distance for

I various values of n, and relating n to the asimuth angle, the transition

distance is determined as a function of angle. To determine the effect of

such factors as the aperture shape and distribution function, a number of

different distributions have been investigated. The distributions chosen for

investigation were Bickmore and Spellmire's two-parameter family of lineI 5
sources, Taylor's line source distribution which yields an arbitrary number

Of equal sidelobes, 'and Taylor's circular-aperture distribution which also yields

|.i
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an arbitrary number of equal sidelobes. 7 The results of the investigations

of the latter two distributions are in substantial agreement, and only those

for the line source are presented herein.

Before proceding to the mathematical details of the analysis, a

short discussion of the procedure used will be presented. For the purposes

of clarity, it is convenient to anticipate some of the results of the analysis

in the course of this discussion. Each of the above classes of distribution

contains a parameter that controls the sidelobe levels of the corresponding

radiation patterns. Additionally, Bickmore and Spellmire Is family contains

a parameter which controls the sidelobe taper. Thus, the dependence of the

transition distance on both the sidelobe level and taper can be determined

by investigating the above distributions.

Because of the mathematical complexities of Fresnel field in-

vestigations, it was expedient to use an approximate analysis in the transi-

tion distance investigations. The approximate analysis has indicated that

the first null transition distance is highly dependent upon the sidelobe level,

and to a lesser extent dependent upon the sidelobe taper. It also indicates

that as n increases the dependence on the sidelobe level decreases, but

the dependence on the sidelobe taper becomes more pronounced; these

conclusions were reached under the condition that the degree of null filling,

specified by K. is identical for each family of distributions. Because of

the questionable validity of the analysis for values of n > 1, the validity of

these conclusions was further investigated, using a more exact analysis.

The more exact analysis has supported the position that for values of n > 3,
th

the n -null transition distance is virtually independent of the sidelobe level,

as was predicted by the approximate analysis. This result is fortuitous

J since it allows an entire family of distributions to be investigated, simply

1



I

by investigating a particular distribution belonging to that family. A nearly

f exact determination of the Fresnel field was made for two particular distri-

butions each belonging to a different family in order to ascertain the effect

of the sidelobe taper on the transition distance. The results of the latter

analysis indicate that if the sidelobes decay slowly, K must be selected as

a descending function of n in order for the results of the transition distance

analysis to be valid. However, if the sidelobes decay rapidly, K may be
th

taken to be independent of n. When K is appropriately modified the n -

null transition distance becomes virtually independent of sidelobe taper as

well as the sidelobe level. For large n, it varies as L/sin 0, where L

is the antenna length and 0 the angle from broadside. The transition dis-

tance analysis follows.

I Because of the similarity between the analyses of each of the

previously mentioned distributions only one distribution will be treated in

detail. At the outset it is advantageous to consider a rectangular aperture

with an arbitrary distribution function.

I The Fresnel field for a rectangular aperture of dimensions L,
L , is given by

IU(B ,0, ) = 3 5) ejk sin 0G( cos * + '1 sin 4)
LI1 /2 -L 2/2

20 + -n sin2 0(4coo + 'n sin 092

e dCdi1 (5)

I
I
1 18



where (C,"i) are the aperture coordinates, G(4,,r) is the aperture distribu-

I tion, k = 2w/) is the wave number,and (R,0, ) are the standard spherical

coordinates. For separable distributions G(4, -1) = G(4) G(i). For such

I distributions and in the (C) principal plane ( 0), Equation (5) may be

written

iU(R, 0,0) e2 C2tj eeRS-L2/2

L" /2 _jk 4' co?
1 G M e j k 4 sin 0 ZR d4os'S ee(6;

It is seen from Equation (6) that the -n integration does not affect the shape

of the pattern in the * = 0 plane. Therefore, the transition distance can

be analyzed on the basis of a line source. For R >> L 1 the quadratic phase

term in the second integral of Equation (6) may be approximated by

C 2 cor82 0 _-cos e
RR

J As mentioned previously, the approximation of Equation (7) will restrict K

to be a decreasing function of n for distribution functions that give rise to

patterns whose sidelobes decay slowly.

1
I
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I

Inserting Equation (7) into Equation (6), dropping the 11 integra-

I tion, and writing L1 = L yields

I L/2 jkg sin 9
U(R, o' 4) = G(4) e d

IL/
I 'J-LI2

jkcos 2 0 L/2 92 G( ) ejkg sin 0 d(
I " 2R LI2

The first integral of Equation (8) is the far field of the line source and the

I second integral is the error field introduced by operating in the Fresnel

region. In the directions in which the Fraunhofer field vanishes, 0 , the

I . error field is given approximately by

S) = L LIZ 2 M jkC sin n
L/ e G(.)e dn (dJ

En) 2 R -L/2

I
Under the change of variables P A Un = L sin On , the error field

relative to the peak of the Fraunhofer pattern is

I V p2 TZ ) ju n d

I E(u) ) (IC
n 4w ('Ir

1 3 G(p) dp

The Fresnel-Fraunhofer transition distance is established by setting E(u )
equal to a percentage of the n sidelobe ratio.

2
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I
E(u ) K- (11)

n

where S is the voltage ratio of the main beam to the n sidelobe, and K
is a parameter which establishes the degree of null-filling. Substituting

I Equation (11) into Equation (10) and rearranging, yields

S I p2 G(p) en dp
IKXR Sn I

I- G(p) dp

I
I iThe transition distance, R, can be obtained from Equation (12)

if the distribution function, G(p), and its corresponding far field pattern is

known. To illustrate the technique, Bickmore's two-parameter family of

- line source distributions will be considered. This family of distributions is

I given by

IG(p) 2 [iwr ~ -/ 3l/Ai iC4TW;p) IPI <W

j (13)

(p) - 1pl < M

These distributions are particularly useful because the parameters C and

I v control the sidelobe level and the sidelobe decay rate, respectively, these

factors, in turn, most strongly influence the transition distance. In general,

I as C increases the sidelobes decrease, and as v increases the sidelobe

decay rate increases. For v < 1/2, the distributions become infinite at

I I2



I
I

the extremes of the aperture, and thus they possess no physical counter-

I parts. For v = 1/2, the distributions are finite at the aperture extremes

and for v > 1/2 the distributions vanish there. The present example will

I be restricted by choosing v = 1/2, which corresponds to the case most often

encountered in practice. For v = 1/2, the distributions of Equation (13)

I become

I 1 (,Cf~
GQp) = -Jo 2 1

(14)

G(p) =o , IpI >W

The corresponding far field pattern is obtained by a Fourier inversion of

* Equation (13) and is given by

i F~u) sin iru 2  C 2~

F(u) = (15)
I Iru2 C 2

This class of patterns has also been studied by Taylor 8 and is often referred

to as modified sin u type patterns. As indicated previously, the sidelobeu

level is controlled by the parameter C. The decay rate is fixed however,

since v 2 1/2. The sidelobe taper (ratio of the first to the second sidelobe)

is 4.5 db. The seros of the pattern, u , occur atun

U n 2 + C2n= 1#,2#,3,.. (16)

I and the maxima of the pattern are given by Y3/ 2.n' where

3 I= nth root of J3 / 2 (x) 0 (17)

1 22
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Noting that

S = F(0) (18
F(Y3 /2,n)

and

G(p) dp = F(O) (19)

fIt is seen that

_____s _ I - 3/2,nn 3/2" (20)G(p) dp F(Y3 / 2 n) sin (y13/2,n )

IInserting Equations (16) and (20) into Equation (121 yields

-X Y.. ~3 / Zn ( W p 2JO(!C4T*;=_)e junp dp (21)
I L 8w2 sin(Y 3 /2,n) -w "

where un and Y3/2,n are obtained from Equations (16),and (17), respectively.

j Equation (21) was evaluated numerically for values of n equal

to 1, 2, and 3. The results are shown in Figure 3; these results clearly

j show that the first null criterion yields a transition distance which is signif-

icantly greater than the transition distances obtained by using criteria based

I upon succeedingly higher nulls as well as by other criteria. This supports

I
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the previous argument that the Fraunhofer formulation can be used to esti-

mate the field strength for sufficiently wide angles at distances significantly

closer than 2L2/ .i
Figure 3 also indicates that as n increases the corresponding

I transition distance becomes less dependent upon the sidelobe level. This

can also be demonstrated analytically. Equation (21) is integrated in Ap-

Ipendix I for large n, and the asymptotic repre~sentation for the transition

distance is obtained as:

K)R.n + l (22)

L2 4n2

IEquation (22) which is independent of C and therefore of the sidelobe level,

is shown for n = 2 and n = 3 as the dashed lines on Figure 3. The agree-

ment between the transition distance calculated by use of Equations (21) and

(22) is very good for the value n = 3. Therefore, the transition distances

corresponding to higher values of n can be obtained by use of Equation (22).

I An analysis identical to that presented above was performed for

the distribution functions of Equation (13), for a value of v = 3/2. These

functions yield patterns whose sidelobe tapers are approximately 7.6 db.

The results of this analysis are shown in Figure 4. Again it is seen that as

n increases the transition distance decreases. Figure 5 shows the n = I

and n = 2 transition distances for Taylor line sources, which yield equal

sidelobe levels. Figure 6 summarizes the effect of varying the sidelobe

j level and taper on the first null transition distance. The transition distance

of distributions whose sidelobe tapers lie between zero db and 8 db lie

within the shaded region. Therefore, this curve can. be used to estimate the

25
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transition distance of most pencil beam type antennas encountered in practice.

If the antenna whose first null transition distance is to be estimated has no

sidelobe taper (for example, a Dolph-Tchebyscheff array), its transition dis-

tance will follow the upper boundary of the shaded region of Figure 6. If the

sidelobe taper is 8 db, the transition distance approximately follows the

Ilower boundary. For intermediate tapers, the transition distance can be

estimated by interpolation.

Inspection of Figures 3, 4, and 5 indicates that as the sidelobe

I taper increases, the first-null transition distance decreases but that the

second and higher-null transition distances increase. In fact, for large n,

the asymptotic expression for the transition distance for the case v = 3/2 is

SKR .~ n+)2 (23)
I L2  (n + /) 3  z,

Comparison of Equations (22) and (23) indicates that for large n the transi-

tion distance for the family of distributions given by Y = 3/2 is approximately

I twice that for the family given by v = 1/2. The shortening of the higher-null

transition distances appears to be even more marked for the Taylor line

J sources, for which the sidelobe taper is zero db. However, the values of

the transition distances as given by Figures 3, 4, and 5 or by Equations (22)

J and (23), do not satisfy the approximation of Equation (7) unless K is taken

to be less than I/n. Therefore, the results of the analyses are questionable

J for n > I, unless K is suitably restricted.

It will now be shown that as the sidelobe taper decreases, the

restrictions on K become more severe. This results in the transition dis-

I tance becoming independent of the sidelobe taper for large n. To determine

!
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the restrictions on K under which Equations (22) and (23) are valid, Equa-

tion (6) must be integrated without the use of the approximation of Equation

(7). This will be done for the cases of v = 1/2 and v = 3/2. Since Equa-

tions (22) and (23) are independent of the value vC, it suffices to perform the

integrations for the special case of wC = 0. For a uniform distribution

(v = 1/2, 7C = 0) the second integral of Equation (6) may be written in terms

of Fresnel integrals. This is accomplished by completing the square in the

exponential, using the change of variables,

T L22

Q = - cos 0

u L sin 0 (24):X
L ~2)

and noting,

(1/2 cos t = J 1 / 2 (t) , (-1/ sin t = 1/ 2 (t) (25)

J The second integral of Equation (6) then becomes:

I ~E(Q, u) = -jep) ( 4Q/ j 1 2

.+ u/2Q) 2 J_ * 1/2 .2 [1/2 (t) + j j 1 /(t) dt (26)

-- ,,Q(+ u/ZQ)
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The integrals of Equation (26) are Fresnel's integrals C(x) and S(x), respec-

- tively, which are tabulated. Thus, Equation (26) allows the exact evaluation

of E(Q, u). To determine the value of the Fresnel field at the n th-null tran-

Isition distance, the corresponding values of Q and u must be ascertained.

From Equation (16), it is seen that in the direction of the nth far field zero,

I u = n. Q is obtained from Equations (22) and (24); neglecting the factor2

cos e:

Kn2

= (2n + 1) (27)

IBy inserting u = n and Equation (27) into Equation (26), the exact value of

the field is calculated in the direction of the n th-null transition distance.I
The approximate and the exact values of the Fresnel field have

I been calculated from Equations (22) and (26) respectively, as a function of

K for values of n = 1, 2, 3, 10, and 25; the results are shown in Figure 7,

I in which the solid curves represent the exact field values and the dashed

lines represent the approximate values. The agreement is very good in all

3 cases if K is sufficiently less than unity. However, as n decreases, the

maximum value of K may increase without degrading the accuracy of the

I results. For n = I, K may take on values of unity or even larger. Hence,

for the distribution under consideration, it is reasonable to select K as a

decreasing function of n. In this way, the results for all n have approxi-

mately the same accuracy. A reasonable choice of the functional relation-

ship can be made by considering the asymptotic limits of the Fresnel integrals.

I
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(1/2) x j/(t)dt - 1/2 + 'inx +

- x(28)

(x
(1/2) j/(t) dt - 1/2- " + 1

Inserting u = n and Equation (27) into Equation (26) and using Equation (28)

yields after some manipulation, the following asymptotic representation for

the exact field

E(K, n) 4K(2n + 1) (29)

(2n + 1)2 - (2Kn) 2

The approximate value of the Fresnel field is given by

E(Kn) K 4K (30)E(K~n = S 2n + 1

1 Subtracting Equation (30) from Equation (29) and dividing by Equation (29)

yields the error introduced by the approximation of Equation (7). The errorI 2
is simply K . Thus, a value of K = 1/2 yields an error of only 25 percent

j [in the calculation of the field strength in the directions of the localized

minima. The error in the direction of the localized maxima is significantly

sless. Hence, a reasonable selection for K, as a decreasing function of n,
is

I n+l

K - (31)
Zn
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which is unity for n = 1, and approaches 1/2 as n approaches infinity.

" Substituting Equation (31) into (22),-ields the transition distance

R 2n + I 2 (32)2n(n + 1)X

which is valid for all values of n. It is noted that for n large (i. e., the

azimuthal angle large with respect to an antenna beamwidth), Equation (32)

I reduces to

L2  L
LX Ln (33)I =n) sine (3

J Equation (6) may be integrated without the use of the approxima-

tion of Equation (7) for the distribution specified by v = 3/2, wC = 0 (whichI
corresponds to an aperture distribution of w - p2 ), by successive integra-
tion by parts. Although this process is tedious, it is straightforward and

I will be omitted for the purposes of brevity. When the exact and approximate

values of the Fresnel field are compared in a manner similar to the above,

Iit is found that K may be taken as unity regardless of n, with approximately

equal results. Substituting unity for K.Into Equation (23), the transition

.1 distance may be written as

(n +_2 L2
R- (-+) L (34)

(n + 1/2) 3 " 4

which again reduces to,

L
sin O (35)
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for n large. Thus, it can be concluded that for azimuthal angles which are

I large compared to an antenna beamwidth, the transition distance is nearly

independent of the distribution function.

C. SNF of Circular Apertures

F1. Mathematical Formulation

The scalar near field of a planar circular aperture of

f radius a, illuminated by a circularly -symmetric distribution function, may

be written from Equation (4) as

F (R,O6) =(I + coso ) ja2 S 7 f(p) 'jr pd (36)I J o

I where

Ir R J 2 +a 2 p 2 -2apR sin 0cos(~p

By the addition theorem for spherical Bessel functions, we may write

-Jkr kh(2) s k p 2 k )( 7
r h0 (kr) jk F,. (2 + 1)PEiGCos(+ A in n'

where ht 2 ) (kR) is the spherical Hakel function of the second kind, j (kap)n nsi os( is the Legendreis the spherical Bessel function and 0 cos P*[ polynomial. The only factor containing the A coordinate is the Legendre
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- polynomial. The P integral can be performed with the aid of the addition

theorem for Legendre polynomials.

P n [sin Co ( - '%3= Pn(O) Pn(cos 0)

+ 2 (n - m)! Phi(O) Pm(cos 0) coo m( - ) (38)
I n=1 (n+ m)! n n

where Pro(cos 0) is the associated Legendre polynomial. Because of the
n

factor cos m(4 - P), each term in the infinite series of Equation (38) van-

I ishes when integrated over P through the range 2i. Therefore

I521 Pn(sin 0 cos A) dp = 27rPn(0) Pn(Coo 8) (39)

The scalar near field is then given by

n+ coso 2  )
F (R p) j (ka p) pdp (40)

n 2 2 Zn=o c nn so, n

0 = off-axis angle

fa = antenna radius

k = 2w/k = the wave number

" f(p) = aperture distribution

Pn(x) = Legendre polynomial

13
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h(2)(x) = spherical Hankel function of the second kind

J(x) = spherical Bessel function

The formulation of Equation (40) is particularly useful because of the fact

that the included integral is independent of the coordinates (R, 0) of the field

point. Thus, for a given antenna this integral need be evaluated only once.

When this is accomplished, the series can be summed for various choices

i of (R, 0) in order to determine the spatial distribution of energy.

I Although this series formulation is, of course, amenable

to computer techniques, the evaluation of Equation (40) is complicated by

J the fact that numerical values of the spherical Bessel and Hankel functions

are not available for the range of orders required. Briefly, large orders

are required for the following reasons: For large values of ka (large an-

tennas), the argument of the spherical Bessel function in the integral of

I Equation (40) becomes large near p = 1. This integral decreases for suffi-

ciently large n, and as a result governs the convergence of the series.

I Approximately 1.2 ka terms are required for convergence; thus, spherical

functions of very high order must be retained. For example, approximately

1100 terms are required to evaluate the expression for an antenna whose

diameter is 300 wavelengths. Thus, a knowledge of the spherical functions

II for at least this order is required. However, previous to the present pro-

gram, numerical data was not available for orders greater than about 60.

I To overcome this difficulty a subprogram for determining the values of these

functions, and for evaluating the integral of Equation (40) was required.

I This program is discussed briefly below.
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2. Computer Program

The programs for determining the spherical Hankel and

Bessel functions were written in a manner which minimized the computation

time, and thus the cost. The first step in the program was to relate the

spherical Bessel functions to the cylindrical Bessel functions as follows:

jn(x) = W- jin+/2x) (41)

hn2 ) = H+ I(2)x) (42)

Here J (x) is the Bessel function of the first kind commonly referred to

simply as the Bessel function, and K2) (x) is the Bessel function of the third
V

kind, commonly referred to as the Hankel function. The Hankel function is

related to the cylindrical Bessel functions of the first and second kinds by

H(2)(x) = J (x) - jN (x) (43)
V IV V

Thus by evaluating the cylinder functions J (x) and N V(x), the values of the

spherical Bessel functions can be ascertained. In evaluating the cylinder

functions, extensive use is made of the recurrence relation

ZvC V+l(x) C() - C (x) (44)"4. x Cv~x"vI

which is satisfied by both J (x) and N,(x) as well as H ()(x). For a given

value of the argument, the function N V(x) can be evaluated for large v from

a knowledge of values for small v, by Equation (44). This technique is of
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limited value for evaluating j (x), because these functions become very

small for large v and sufficient accuracy cannot be retained with available

techniques. Thus, a more sophisticated program is required to evaluate

3 (x). This program encompasses a number of techniques, the details of

which are outlined in Appendix II.

Once the spherical Bessel and Hankel functions have been

obtained, the integral of Equation (40) can be evaluated numerically. How-

ever, to obtain acceptable accuracy, the integral must be divided into 3 ka

intervals. Since the number of terms required for convergence is also pro-

portional to ka, the time for evaluating Equation (40) is proportional to
2

(ka) , by this technique. For even moderately large apertures the computer

time becomes prohibitive. This difficulty was overcome by establishing a

recursion relationship satisfied by the integral of Equation (40), under the
2 4

condition that the aperture distribution is of the form, f(p) = 1 + ap + a 2 P

6
+ a 3 p . Under this condition the integrals involving odd orders of the

spherical Bessel function are zero, and those involving even orders satisfy

12m+ 4n + 3 J2n+l ( k a P )
m j 2 n(kap) dp = 2(n+m + I) kap

1~
2(n-m) + 1 I P2m+p
2(n + m + 1) p+ k  dp (45)

It proved advantageous to apply Equation (45) in a backward manner; that is,

the values of the integrals involving smaller orders of j 2 n(kap) were ob-

tained from the values of the integrals involving large orders. By starting

with a sufficiently large order, the integral on the righthand side of Equa-

tion (45) can be made aribtrarily small and can be taken to be zero. Inspection

39



of Equation (45) shows that when this procedure is followed, no integral need

be evaluated directly. Thus, the required computer time was reduced by a

factor of 3 ka from that of the more conventional approach. The accuracy of

this approach was checked by comparing the results of calculations made on

relatively small antennas, to those obtained by numerical integration. The

two sets of data agreed to five places. The calculations were made on an

IBM 7090 computer.

3. Evaluation of the SNF

With the aid of the computer program described above,

the SNF of various antennas was readily calculated. In keeping with the

philosophy of the study program, which was to obtain information that can

readily be used to evaluate situations that arise in practice, a class of dis-

tribution functions capable of closely approximating practical aperture distri-
2

butions was selected for study. These functions have the form f(p) 1- + alp
4 6

+ a~p + a 3p . If, in a given situation, the aperture distribution is known,

or can be measured, it can be matched by the above class of functions by

appropriately selecting the aperture distribution parameters a,, a 2 , and a 3 .

In the case of high-gain, paraboloidal-type reflectors, experience indicates

that the primary feed patterns are usually quadratic in nature. Thus, if at

some point the primary pattern's beamwidth is known (for example, the 3 db

beamwidth), the distribution function can be predicted with reasonable accu-

racy. This phenomena is discussed more fully by Jasik, 9 who presents

universal feed horn patterns.

Using the technique of Jask, which also accounts for the

space attenuation factor, it is thus possible to obtain curves which relate

the aperture distribution parameters al, a,, and a to the aperture taper.
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(The aperture taper is the ratio of currents at the center and edge of the

aperture. ) Such curves are shown in Figure 8. The universal curves of

Figure 8 are somewhat dependent upon the ratio of the focal length to antenna

diameter (f/D ratio); the dependence is so slight that it can be ignored in

most practical cases, however. The curves of Figure 8 were calculated for

an f/D ratio of 0.400.

2 4 a~6

By inserting the function 1 + alp + a2 p + a p for the

distribution function f(p), the integral of Equation (40) can be divided into

four integrals as follows:

f(p) (kap) pdp 5 J(kap) pdp + a1 5 2 j (kap) pdp

o o so
+a 2  p4jn (kap) pdp + a3  p6jn (kap) pdp (46)

Each of the above integrals is purely real, as are each of the coefficients of

the summation of Equation (40) except the spherical Hankel function. The

spherical function is complex, as indicated by Equations (42) and (43), and

thus the scalar near field is also complex.

The scalar near field for circular antennas of diameters

10), 20%, 4"0), 80), and 160X have been computed from Equation (40), for

selected values of range. In the computations, the scalar near field was

divided into eight components; four real and four imaginary. One real and

one imaginary component arise from each of the integrals of Equation (46).

Thus, the scalar near field takes the form

41



IF
I

1" 2.4

S2.0

I 1.2

a

- -a
~~~0.4---"

0.010 4 8 12 2

APERTURE TAPER - in db

Figure S. Aperture Distribution Parameters Versus Aperture

I" Taper for High-Gain Paraboloidal Type Reflectors

42



F n(, R) = ReI 1 + jImI1 + aIReI 2 + jalImI2 + a2 ReI3 + ja2 IrmI 3

+ a3ReI4 + ja 3 imi 4  (47)

where Re and Im denote the real and imaginary parts of the summation of

Equation (40), and the subscripts 1, 2, 3, and 4 denote which integral of

Equation (46) was used in the evaluation. This formulation has the marked

advantage that once the eight field components ReI1 through ImI4 have been

evaluated, the scalar near field of an antenna whose distribution function can

be approximated by 1 + ap 2 + a2 p4 + a3p6 can be easily determined. By

virtue of Equation (47), only simple operations involving additions and multi-

plications are required for this to be accomplished. Thus, analytical esti-

mates of the near field behavior of reflecting-type antennas can be made by

field personnel in a simple manner.

Volume II of this report contains tables of the field compo-

nents of an 80k circular aperture, for 40 values of range varying selectively

between R = 0.0125 D / and R = 2D /. The increments in range and

azimuth angle are sufficiently small so that both the range and angular varia-

tions in field strength can be accurately reproduced. From these tables, the

SNF of antennas of arbitrary size and aperture distribution can be computed.

* Included in Volume II is a complete description of the use of the tables and a

number of sample problems. The interested reader is referred to Volume

H for a detailed description of the SNF calculations. Justification of using

calculations based upon a specific aperture size to deduce the SNF of aper-

tures of a different size, will now be made.

4
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4. Universal SNF Patterns

Antennas which are identical except for size, have identi-

cal far field patterns except for an angular scale factor. Advantage is often

taken of this phenomenon by graphing the patterns in u space (where u :

ka sin 0) in which the patterns are identical. This has the distinct advan-

tage that one graphical representation can be used to describe the far fields

of all antennas whose aperture distributions and shapes are the same.

The graphical representation of near field data cannot be

accomplished as easily, however. First, since the shape of the near field

patterns is dependent upon range, a family of curves is required to describe

this dependence. Second, the scalar near field patterns of antennas which

are identical except for size are not simply related. This implies that it is

necessary to perform an independent analysis each time the antenna size is

varied. The need for independent analyses greatly complicates the problem

of data presentation and multiplies the cost of the computational program.

For these reasons it is of importance to determine what conditions, if any,

permit the prediction of the scalar near field of one antenna from that of

another antenna of different size. Investigation of the small angle Fresnel

approximation indicates that this is possible under restricted conditions.

Within the accuracy of this approximation, the Fresnel fields of unequally-

sised but otherwise identical antennas, when plotted as a function of u, are

identical at distances specified by like values of RX D Also, since the

transition distance analysis indicates that at wide angles, the scalar near

field tends to behave as the far field, there is reason to suspect that such

predictions are possible even at wide angles.
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For the case of a uniform circular aperture, the on-axis

SNF integral can be evaluated in closed form. The amplitude of the on-axis

field is given by

F N(R, 0) = sin[ R 2  
- (48)

Equation (48) shows that the on-axis field of uniformly-excited circular

apertures of different diameters are identical at ranges specified by like

values of [qLR2 + (D/Z) 2 - R. - lthough this is not precisely true, it is

very nearly true for distributions other than uniform. Thus, in order to

determine if universal SNF patterns can be constructed, from computations

based upon a specific antenna size, the patterns of apertures whose diam-

eters differ should be compared in u-space and at ranges such that

LRY + (D/2)Z - R] is constant. A number of such comparisons have been

made Among others, the scalar near fields of 10),, 20., 40X, and 80

apertures have each been compared to the SNF of an 160X aperture at se-

lected values of range. In each case, the range was selected to be nearly

at the inner boundary of the SNF for the smaller aperture. For example, in

the comparison between the 10) and 160) apertures, the SNF of the 10) aper-

22
• ture at a range of IZX (R = 0.12 D /X) was compared to that of the 160X,

aperture at a range of 3,080) (R = 0.1203 D /). Thus, if the two scalar

near field patterns were sufficiently alike, calculations on the larger aperture

could be used to predict the entire SNF of the smaller aperture. Conversely,

calculations on the smaller aperture can be used to predict the SNF of the
2

larger, for ranges satisfying R ;t Dmax/Dmin.

Figures 9 through 12 show four comparisons such as des.

cribed above. Figures 9 and 10 show a comparison between the scalar near
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fields of 10), and 160. apertures. In each case, the range is approximately

given by R = 0.12 D 2/A. The aperture distribution corresponding to the

patterns of Figure 9 is uniform, and to the patterns of Figure 10 is (I -. p 2).

The fields are plotted against u, where u = ka sin e. The maximum value

of u considered is 10w; for the I0), aperture, this corresponds to an azi-

muthal angle of 90 degrees and for the larger aperture of only 3.58 degrees.

It is seen that although the ratio of antenna sizes is 16:1, the scalar near

fields of the two antennas correspond exceedingly well, even at levels as

low as 40 db below the maximum.

Figures 10 and 11 compare the fields of 80) and 160X aper-
2tures at values of range which are approximately given by R = 0.015 D ).

The aperture distribution for Figure 11 is uniform and for Figure 12 is

(1 - p 2). The fields are plotted to a value of u = 150, which corresponds to

36.6 degrees for the smaller aperture and 17.3 degrees for the larger. The

fields were actually calculated to a value u = 252, which corresponds to

90 degrees for the 80) aperture. However, the agreement between the cal-

culations improves beyond u = 150, so that for convenience the graphs were

terminated at this point. Again, it is seen that the differences between the

fields is insignificant from a practical standpoint, although the calculationsvwere made for a range which is quite deeply submerged in the near field.

The results of each of the comparisons made during the

course of the investigation were similar to those presented herein. Thus,

it can be concluded that universal SNF patterns can be constructed from

calculations based upon a particular antenna size.
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5. Accuracy of the Scalar Near Field Formulation

As indicated in Section III. A, the scalar near field formu-

lation yields an approximate measure of the field strength. To gain an

appreciation of the accuracy of the formulation, it is of interest to compare

the results of one calculation with the exact computations of Hansen and

Bailin. 4  This is done in Figure 13, which shows a comparison of the field

strengths as computed by Hansen and Bailin and by use of the scalar near

field formulation for a ten-wavelength antenna at a distance of ten wave-

lengths. The agreement between the two curves of Figure 13 is very good

to an azimuth angle of 70 degrees, beyond which no data is available on the

exact field. Although this simple comparison does not definitely establish

the accuracy of the scalar near field formulation, it indicates that the re-

sults of scalar near field computations can be used with assurance in the

evaluation of interference phenomena.

6. On-Axis Field

The on-axis SNF is of importance in many applications,

especially from the standpoint of personnel safety. Therefore, although the

on-axis case can be calculated by the techniques discussed previously, it is

worthy of special note. The on-axis field for the class of distributions under

investigation is given by

i2

FN(R, 0) jk 5 [ + a1 .E 2 a + a ( -Jk4 pdp (9

I.
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Equation (49) can be evaluated in closed form by noting that,

-jkq 77
dp = -jkp (50)

dP e R + p2

and integrating by parts. It is of interest to consider the on-axis region

which is relatively close to large antennas. In this region terms of the
2 2

order (X/R), (X/D) , and (RX/D ) can be ignored; and the on-axis field

becomes

N (R. 0) = [f(O)+ f(a) sin 2 -

+ jf(O) - f(a)] cos + -

where f(O) is the aperture distribution at the center of the aperture and f(a)

is the aperture distribution at the edge of the aperture, both in volts/meter.

Differentiating with respect to R, shows that the field minima occur at

values of R satisfying

1 kR 1] = nw , n = 0, 1s,2, . . . (52)

Similarly, the field maxima occur at

% 1 I jr n ,1,2]..(3
+ 7 l 2n+l
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Thus, the minimum and maximum field strengths are simply

F N(min) = f(O) - f(a) (54)

F N(max) = f(O) + f(a) (55)

Equations (54) and (55) are valid for values of RX/D 2 << I. Two interest-

ing conclusions can be drawn from Equations (54) and (55). First, the maxi-

mum and minimum values of the on-axis field depend only upon the strength

of the aperture distribution at the center and edge of the aperture, and are

independent of the aperture diameter. Second, the ratio of the maximum to

minimum on-axis field strengths depends only upon the aperture taper, and

is independent of the exact shape of the aperture distribution. It is interest-

ing to note that for a uniform distribution, the field strength varies between

zero and twice the strength of the field in the plane of the aperture. How-

ever, for distributions which vanish at the edge of the aperture, the on-axis

field strength (maximum and minimum) is independent of range and equals

the field strength at the center of the aperture.

D. Rectangular Apertures

1. Approach

During the course of the investigation, a number of tech-

niques for evaluating the scalar near field of rectangular apertures were

discussed. Of these, the most advantageous was to analyze the principal

plane patterns of rectangular apertures in terms of the scalar near field of

line sources. This approach assumes that the shape of the scalar near field
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I
in the principal planes of a rectangular aperture is determined entirely by

Ithe field distribution along the corresponding aspect of the aperture. It also

assumes that, when properly modified, the product of the on-axis fields of

two line sources yields the on-axis field of the rectangular aperture. These

assumptions are correct to within the Fresnel approximation; it will pres-

ently be shown that the assumptions yield very good results at distances

significantly less than can be justified by the Fresnel approximation.

2. Angular Variations of the SNF

In the principal plane, the scalar near field of a uniformly

illuminated line source of length L, oriented in the x-direction may be

written as

-L/2 ejkqR2 + x 2 - 2Rx sin 0

I 1 (R.O) L dx (56)
LI/2 RZ +x 2 - 2Rx sin 0I

The scalar near field in the corresponding plane of a uniformly illuminated

I strip aperture, of constant width L in the x-direction and infinitely long in

the y-direction, is

L/2 -jk q R 2 + x 2 " ZRx sin 0

2 -L/2 Is R 2 + x2 - 2Rx sin 0

as expected the line source gives rise to a set of spherical waves while the

infinite strip gives rise to cylindrical waves. Thus as a function of range,

the fields associated with each aperture behave quite differently. However,

I
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I
the E-dependence of the fields is strikingly similar, as evidenced by the fact

Ithat the phase terms in each integral are identical. The variation in the e-

dependence normalized to a line source field can be determined by investi-

I gating the difference

I FzR.0

-1 / (58)
R 1/2F (R,9)

which will be shown to vanish as (L/R)Z for R. large. By differentiating
Equation (58) with respect to 0, and equating the differential to zero, it is

1 seen that the maximum difference for finite R. occurs at O = r/2.

I Thus, to determine the maximum difference in the scalar

near fields of the line source and the infinite strip apertures, only the

I direction 9 = 7r/2 need be considered. For 0 = 1r/2. and under the change

of variables k(R - x) = t, Equations (56) and (57) may be written in terms

of the sine- and cosine-integrals and in terms of the Fresnel integrals,

respectivelyI
Ik(R - L/2) cost + j sin t

FRw/)=- IdtIF1 (R/) k(R + L/Z) t

I = Ci(kR - kL/2) + jSi(kR - kL/2)

I -Ci(kR + kL/2) - jSi(kR + kL/2) (59)

l
l
I
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and

1/ l k(R + L/Z)
F2(R,w/2) =Xk(R - L/2) _'I/Z(t) + J 11/2 (t] dt

- x 1/2 [C(k + kL/2) + jS(kR + kL/2)

I - C(kR - kL/2) - jS(kR - kL/) (60)

!
Under the conditions R Z L, L/ ? 10, the asymptotic representations for

the sine- and cosine-integrals and for the Fresnel integrals may be used

with negligible error. The asymptotic limits for the Fresnel integral are

given in Equation (28); asymptotically, the sine- and cosine-integrals

approachI
ejx

i Ci(x) + jSi(x) M j- (61)

j selecting the aperture width, L, to be an odd number of half wavelengths,

which makes 0 = w/2 correspond with the direction of a far field sidelobe,

I and using the asymptotic limits for the functions of Equations (59) and (60),

Equation (58) becomes

1 - 1/2 1 - +2I__ +

R F I (R, w/2) ZR 2  I - L/R 'JI + L/2R

I 0.156(L/R) 2ly (62)
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For the minimum range of interest, R = L, the normalized difference be-

tween the two patterns is approximately 0.156. This means that in direc-

tions corresponding to the far field maxima the greatest difference between

the normalized patterns of the line source and infinite strip apertures is

-. approximately 1.5 db. If the range is increased to a value of ZL, the dif-

ference between the patterns diminishes to approximately 0.3 db. Thus, in

the principal plane, the angular dependence of the line source pattern is

essentially identical to that of the infinite strip aperture even at very short

Iranges.

To conclude the argument that the shape of the scalar near

field in the principal plane of a rectangular aperture is determined almost

entirely by the field distribution along the corresponding aspect of the aper-

ture, an aperture which is finite in both dimensions will be considered. The

distribution function will be selected to be uniform in the x-direction and

gabled in the y-direction. For convenience the aperture will be taken to be

square, of length L on a side. The field will be calculated at a range

R = L , in the principal plane which is orthogonal to the x-axis. It will be

shown that even at this close range the field is but slightly different from

that of the infinite strip aperture.

IThe scalar near field in the principal plane of interest is

I given by

I = '/2 T Ii y.' e~j k w 2 + 2

,L2 I d L/2 -Id
F(R. O) :2 ILIZ d: 0 4 2L2 dy (63)
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2 R2 2
where w = R + x - 2Rx sin 0. The y-integral can be extracted by partial

integration, which yields for the SNF:

LI, [THL/2 (2) 2 e'jkW

F(R0) = jH (kw) - LL2 dx (64)
a-LIZ 

using the asymptotic representation for the Hankel function, Equation (64)

becomes

F(R,)=j -LI w dx (65)

From Equation (65) it is clear that under the condition that / >> 2

the scalar near field of the finite aperture is negligibly different from that

of the infinite strip aperture. This is satisfied if w is of the order of L

and if L >> X, which are precisely the conditions of interest.

From the above analysis it can be concluded that in the

principal plane the scalar near field of a rectangular aperture is negligibly

different in shape from that of a line source with a corresponding length and

aperture distribution. Thus, the rectangular aperture analysis is reduced

to the analysis of a line source with respect to obtaining the 0-variations of

field in the principal planes.
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3. Range Variations of the SNF

Line source theory, also permits an approximate deter-

mination of the range dependence of rectangular apertures. When properly

modified, the product of the on-axis fields of two line sources closely

approximates the on-axis field of a rectangular aperture. Since the angular

variations have been obtained previously, this is all that is required for a

total solution.

The on-axis SNF integral for a rectangular aperture of

dimensions L and L 2 is

FN(R, f)  L 1Lx) f(y) e (. 166)NII -L/212 NR+ x 2 +7

In the investigation, the following approximation was made for the SNF

integral

CL /2 -jk 4 R2 +y L2 /2 -jk R2 +x

FN(R. 0)=Re~k 3 f(y) e dy f(x)e dx (67)
-L/2 + -L2 /2 +x

In the development of Equation (67), the following approximations were

used,

(R2 +x 2 + y = R2 + X2- + + ) 1 R (68)
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in the phase term, and

( R 2 + x 2 + / R2(1 +2  1/2 (R2 + (69)

in the amplitude term. By expanding each of the terms in Equations (68)

and (69) in a binomial series, both of the approximations are seen to be

significantly better than the Fresnel approximations. The approximations

are poorest for a square aperture, and improve rapidly as the aperture's

aspect ratio increases. For all ranges and antenna sizes of interest, the

approximation for the amplitude term introduces negligible error, even for

the square aperture case.

As can be seen from Equation (68), the "phase error"

introduced by the approximation for the phase term vanishes along the

principal aspects (x = 0 or y = 0) of the aperture. The "phase error" is

greatest along the diagonals and attains its maximum value at the corners

of the rectangular aperture. The "phase error" is proportional to L /,

and is shown in Figure 14 as a function of R/L 1 , for various values of

LI/L 2 . From Figure 14, it is seen that for a square aperture 100 wave-

lengths on a side, the "phase error" at R = 100) is about 410 degrees.

However, for an aperture 100X x 50., the "phase error" at R = 100 is

only about 11.5 degrees. For the square aperture case, the error intro-

duced by the approximation of Equation (68) decreases very rapidly with

increasing range; at R = 2L 1 , the error is only about 65 degrees for the

10OX aperture, and 19 degrees at R = 3L . Thus, except for large square

apertures and ranges in the immediate vicinity of R = L , the line source

approach yields excellent results with respect to predicting the SNF of

rectangular apertures. Even for the square aperture case, it is doubtful
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that the calculations will be more than a few db in error, due to the fact

that the phase errors are highly localized, and because their effect is

minimized by integration.

4. Mathematical Formulation

By using the addition theorems for the spherical Bessel

functions and the Legendre polynomials in a similar manner as was done

for the circular aperture case, the SNF of a line source may be written,

S2 L/2
F(R, 0) =I + cos e) n)(2n + 1) P (sinG) h (kR) f(x) j (kx) dx (70)2 .' (2 +) nn n) -Lh

n=o -L/2

The line source formulation of Equation (70) is nearly identical to the

formulation of Equation (40) used in the circular aperture case. This has

allowed a single computer program to be written which can be used for both

cases, and has resulted in a significant saving in time, effort, and expense.

5. Evaluation of the SNF

From this point, the procedure used to determine the

SNF of rectangular apertures is almost identical to that used for circular

apectures. Volume II of this report contains extensive SNF tables for line

sources, from which the SNF of rectangular apertures whose size, aspect

ratio, and aperture distribution function are arbitrary, can be constructed.

These calculations were based upon an aperture length of 80, but are valid

for a wide range of antenna lengths. This has been established by compari..

sons which are identical to those reported for the circular aperture case.

The results of the comparisons for the two cases are virtually identical.

I6

63



[
I

For rectangular apertures of dimension L 1 and L2 , the

aperture distribution function is selected as

IAfxy) + [ + + a [1 + a (40 + a+ a (71)

I
unlike the circular case, a universal set of the aperture distribution param-

eters, a n, a' n, is not meaningful, because a variety of distributions is

commonly used with rectangular apertures. Fortunately, however, rectan-

gular antennas are usually designed on the basis of the aperture distribution,

and it is known in most cases. Thus, the aperture distribution parameters

can usually be obtained by curve fitting.

A complete explanation of the SNF calculation for rectan-

gular apertures is given in Volume II, to which the interested reader is

referred.

E. Additional Considerations

The preceding analyses were conducted on the basis of a free-

Ispace environment and operation at the design frequency. Thus, such

factors as feed spillover, leakage through mesh-type reflectors, ground

Jreflections, and spurious radiations have been neglected. Presumably, the

above factors can significantly affect the intrasite interference picture.

T Unfortunately, however, analytical techniques are found wanting from the

standpoint of determining these effects in a general fashion. For example,

spurious radiations depend not only on the type of antenna, but on its age

and condition, the type of power tube, and the operating power level. The

picture is even more complicated with respect to site reflections.
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Additionally, an "optimum" analytical approach depends on the

manner in which the results of the analysis are to be used. For example,

if the prime purpose of the analysis is to determine the probability of inter-

ference in a general situation, the uncertainties introduced by the above

factors can be related to the standard deviation of a statistic which describes

the spatial distribution of energy associated with antennas. Thus, a de-

tailed description of the spatial distribution of energy in the presence of the

disrupting factors, would not be required. However, if the purpose of the

analysis is to isolate the exact causes of interference in a specific situation,

a more detailed analysis is needed.

For these reasons, the effort extended into the above areas was

very limited, and few definitive results were obtained. Thus, the present

discussion is limited to general observations with respect to the importance

of these factors to the total RFI picture.

The problem of transmission through meshes is of interest in

an RFI investigation because many reflector-type antennas are made of grids

or meshes through which part of the energy may be propagated. Thus, the

energy density in the "shadow" region will depend on the transmission char-

acteristics of the gratings used in the reflector's construction.

The problem of transmission through gratings has been studied

I -both theoretically and experimentally by several investigators over a num-
10

ber of years. Notable among these investigators have been Hayes, Wilson

11 1Z 13and Cottony, Groves, and Mumford. Their work has been reviewed

by ASI and found to be in good agreement and the results of these investiga-

tions can be used to estimate the energy density in the shadow region for

common antenna types.
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These Investigations indicate that even at the design frequency

the leakage fields can be appreciable. Depending on the design of the grid

structure, the power leakage can vary between about one-tenth of one per-

cent and three percent. At spurious frequencies, the percentage of power

in the leakage field increases rapidly and can reach values of fifty percent

or more.

Fee-d spillover can also have significAnt effects. The amount of

spi]over -. ares w.th the aperture taper and type of feed. For example, with

a cassegran-an fet-d it is possible to design an almost uniformly illuminated

antenna with very little spillover. With conventional feeds this is not gener-

ally the case. The amount of power in the spillover field is often as great

as five percent of the total radiated power.

Since the presence of reflected waves can appreciably alter the

distribution of energy in the near zone, the implications of ground reflections

with respect to RFI are apparent. The magnitude of the reflections depends

* upon many factors, including: the presence or absence of architectural struc-

tures and vegetation, ground conductivity, the operating polarization, the

ground roughness, and the extent of smooth ground. Each of these factors

varies between sites and is affected by such factors as the weather and sea-

* sonal changes. Therefore, the task of constructing a meaningful mathemati-

cal model that accurately accounts for site reflections is extremely difficult,

" if not impossible. Thus, simplifying approximations must be made in the

theoretical approach to the site reflection problem.

The simplest approach towards estimating the effect of the

ground is to assume that it behaves as a smooth conductor of infinite extent.

Under such an assumption, the total fields can be calculated by image theory.
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Even such a simplified approach results in a mathematically complicated

problem. This is due to the fact that in order to obtain the total near field,

the scalar near fields of two antennas (the real and the image antenna), must

be added. In performing the addition, the fields emanating from each must

be written with respect to a common coordinate frame. Since in the present

study the calculations have been performed about a coordinate frame whose

origin is at the center of the actual antenna, a linear transformation of

coordinates is required to express the fields of the real and image antennas

in a common frame. Although such a transformation is straightforward,

the field expressions become very cumbersome and the calculation of the

total field becomes tedious and costly. When it is recalled that the assump-

tion of a perfect ground plane is highly idealized and that this assumption

yields at best gross approximations to the actual fields, the advisability of

performing detailed and rigorous analyses is questionable. A less rigorous

analysis can be performed with considerable facility, however. The basis

of this analysis is to use the far field of the image antenna to estimate the

reflected field in the near region. This approach is justified when the wide

angle lobes of the image antenna's radiation pattern are the primary contri-

butors to the reflected field in the near sone, because at wide angles the

scalar near field tends to follow the Fraunhofer field. Because of the gross

approximations inherent in this approach it cannot be relied upon to predict

the detailed structure of the near field. However, it does allow an estimate

to be made of the relative importance of the reflected field, especially with

" respect to the generation of localized areas of high field. This latter prob-

lem is of particular importance with respect to RFI applications.

The magnitude of the disturbance at a given point depends, of

course, on the relative intensities of the direct and reflected signals at that

point and the phase with which these signals add. The signal intensities, in

1"
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turn, depend on the angles subtended by the field point and the electrical axes

of the real and image antennas. Generally as the angles increase, the field

intensities decrease although not monotonically because of the lobed structure

of the fields. The phase with which the fields add depend on the height of the

real antenna above the ground and the position of the field point.

A simple example, in which the transmitting antenna is directed

at the horizon, is helpful in visualizing the effect of ground reflections. The

exact phase with which the direct and reflected signals add will be neglected.

This procedure is justified because the maximum effects occur when the

signals add either in-phase or out-of-phase. For points on the ground, the

angles subtended by the axes of the real and image antennas are equal; thus

the intensities of the direct and reflected signals are equal. For points

above the ground the angle subtended by the axis of the real antenna decreases

and the angle subtended by the axis of the image antenna increases. Thus

the effect of the reflected field will: diminish as the observation point is

raised above the ground. However, as the field point approaches the zenith,

the difference between the angles approaches zero. Therefore, if the eleva-

tion of the field point continues to increase, the relative importance of the

7 reflected wave will eventually increase.

- It can therefore be concluded that the maximum disturbances

are likely to occur in the directions of the horizon and of the senith. In

these directions, the signal intensity can be as much as six decibels above

that calculated on the basis of free space operation if the direct and reflected

fields add in phase. If the signals add out of phase, the field can vanish in

these directions. In actual operation, the maximum increase or decrease

in signal level would be less pronounced due to the effects of ground absorp-

tion and nonspectral scattering.

6
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Predicting the antenna's behavior at nondesign frequencies rests

upon the ability to predict the antenna's aperture distribution and efficiency

at these frequencies. If the aperture distribution is known, the scalar near

field can be determined by the techniques developed in the present study

program. However, it is theoretically possible to determine the aperture

distribution only if the geometry of the antenna circuitry is completely speci..

fied. Even for relatively simple feed geometries, the problem is very com-

plex due to such factors as the generation of higher-order modes. In com-

plicated feed structures, such as are common to array-type antennas, the

difficulties increase by orders of magnitude. However, for illustrative

purposes, it is of interest to consider the far field behavior of a horn-fed

reflector type antenna with regard to harmonic operation. Consideration of

the far field serves to delineate those facets of the problem which arise be-

cause of operation at nondesign frequencies. Extension of the results to the

near field can be accomplished as indicated previously.

Neglecting phase-error effects in the primary feed and the pos-

sible existence of high-order modes, the illuminating pattern is dictated

solely by the horn size in terms of wavelengths. Proceeding, consider the

illumination pattern at the fundamental frequency to result in a highly

tapered aperture distribution function. This results in a far field pattern

with low sidelobes and typifies an operational radar system. Increasing the

frequency has the effect of narrowing the illuminating beam, increasing the

f" tper of the aperture illumination function, and results in further decreasing

the sidelobe level. The trend would continue as long as the illumination re-

mains a constant-phase distribution and reaches its limit when the taper

becomes zero at the aperture edge. This would occur when the first null

angle of the primary feed is coincident with the angle subtended by the

16
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reflector-feed assembly which, for typical antennas, is perhaps fifty per-

.- cent above the design frequency. If the operating frequency continues to

- increase beyond this condition, the reflector will then be illuminated by

- secondary lobe energy of the feed pattern in addition to its main lobe. This

introduces out-of-phase illumination at the periphery of the aperture which

raises the sidelobes and can eventually result in bifurcation of the main

beam. Total splitting of the main beam will occur at approximately twice

" - the design frequency. As the frequency increases further, the generation

of multilobed patterns occurs.

The above discussion illustrates the type of behavior that can be

- anticipated by operation at other than the design frequency. However, sev-

" eral factors which influence the frequency response have not been accounted

for. The foremost is the possibility of higher order modes which can distort

the primary feed pattern and thus, the illumination of the reflector. To

theoretically estimate the primary feed pattern, it is necessary to know the

modal content of the fields in the mouth of the primary feed horn. Next, the

wavegront in the antenna feed has been assumed to be planar at all frequencies.

Actually, the wavefront is curved; the amount and type of curvature depends

upon the feed horn's geometry. For instance, the wavefront is cylindrical

for the sectoral horn. This deviation from the planar wavefront introduces

ya phase error across the primary feed aperture. In practice, a tolerable

phase error is allowed at the design frequency and is adjusted to be a suffi-

f ciently small fraction of a wavelength. This results in a nearly constant

phase distkibution over the aperture. Since the phase error increases pro-

Fportionally with frequency, the distortion of the phase front from a plane can

be significant at nondesign frequencies. This is characterized by reduction

" in on-axis gain and higher sidelobe levels in the primary feed pattern.
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Additionally, two other factors influence the frequency response

of reflector-type antennas: mechanical tolerances and the location of the

feed horn's center-of-phace. It is apparent that minor deviations in the shape

of the reflector from a paraboloid will affect the secondary pattern increas-

ingly as the frequency increases. Also, as the frequency varies over several

octaves, the location of the center-of-phase of the primary feed can vary sig-

nificantly. This defocuses the secondary patterns. The effect of each of

these factors is to destroy the sharp character of the secondary pattern by

filling in the nulls. Thus, in practice, the main lobe bifurcation and subse-

quent generation of multilobed patterns due to the increase in frequency will

be moderated by the phase error effects.

F. Pattern Measurement

Although not directly related to RFI, the problem of measuring

far field patterns in the near fields of large antennas is becoming of increas-

ing interest.

One of the more promising approaches to this problem is the

possibility of focusing the antenna at some distance compatible with avail-
14

able pattern ranges and measuring equipment. R. W. Bickmore has

accomplished this with linear arrays by physically curving the antenna so

that the resulting wave shape converges spherically. Unfortunately, in the

case of reflector-type antennas, this technique is highly impractical. On-

axis shifting of the feed has been investigated for such antennas, with some

success; however, this is at best an approximate solution and is limited by

aberration effects and the physical difficulty of shifting the feed.
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ASI's interest in this problem has led to a number of measuring

techniques, two of which have been reported in the literature.1 5 ,16 The

present discussion is concerned with an investigation of focusing by means

of a lens placed between the feed and the reflector. Basically, this analysis

consists of illuminating a parabolic dish with a point source placed at a finite

nonfar field distance on the axis of the reflector. The reflected wave passes

through a lens which focuses it on the antenna feed. By virtue of the reci-

procity of geometrical optics, the lens surface computed from this analysis

will transform a spherical wave, emanating from the feed, into an incident

wavefront which, when reflected by the dish, will converge to the position

of the original illuminating point source. Thus, the antenna will be focused

at this point.

The first step in this procedure is to analyze the wavefront pro-

duced by a parabolic reflector which is illuminated by a spherical rather
17

than a planar wavefront. The approach of Kelleher is suitable for this.

This approach has derived a vector expression relating an incident wave-

front, a reflector, and reflected wavefront, such that given any two, the

third may be determined.

After the reflected wavefront has been computed, the remaining

step is to determine the shape of a lens, which will convert this wavefront

into a spherical wave, centered at the feed point of the reflector. To accom-

Iplish this, it has been necessary to derive an expression relating a general

incident wavefront, a lens surface, and the refracted wave. This has been

done by following a procedure similar to Kelleher's reflector analysis.

Using these concepts, an example has been worked out in which

a parabolic dish antenna, I ratio of 0.s) has been focused at a distance of
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five diameters from the vertex of the parabola. The analysis determined a

suitable family of single surface lenses of relative dielectric constant E = 2.

Figure 15 shows a cross-section of the reflector and two of the possible

lenses. Also shown are typical traces of rays emerging from a finite point

on the axis. The corresponding rays emerging from infinity and being re-

flected on the focus (in the absence of the lenses) are also shown.

It is seen from Figure 15 that the rays which come from a finite

point and from infinity converge on the focus of the parabola from different

directions. If the aperture distribution is to be the same in the presence

and the absence of the lenses, the rays should converge at the same angle.

Thus, the single surface lenses will appreciably distort the aperture distri-

bution and, consequently, the pattern measurement will be in error. Thus,

it has been concluded that a single-surface lens is incapable of providing

the proper focusing for far field measurement in the near zone.

This difficulty can be overcome by designing a double surface

lens, in which the additional degree of freedom permits the aperture distri-

bution to be unaltered. Basically, the design of the double surface lens is

an extension of the design of the single surface lens.

G. Experimental Program

1. Test Apparatus

The experimental program consisted of measuring the on-

axis power density of three X-band antennas; a parabolic dish antenna, a

slotted rectangular waveguide array, and a slotted radial waveguide array.

The test setup is pictured in Figure 16, which shows the dish antenna in
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proper test position. As can be seen, the test antenna radiates vertically

upward, minimizing site reflections; the test probe, which is simply an

open-ended rectangular waveguide, is raised automatically along the bore-

sight axis. This is accomplished by means of a cable attached at one end

to the probe and at the other to a four-foot plywood disc which is fastened to

the turntable of an azimuthal antenna mount. The cable that carries the

audio output signal was used for this purpose. When the mount is energized,

the cable raps around the plywood disc, raising the pickup probe. By syn-

chronizing the chart drive of a pattern recorder with the orientation of the

pattern mount, a continuous plot of the on-axis power is obtained in exactly

the same fashion as a radiation pattern is commonly obtained.

As can be seen from Figure 16, the test antenna is placed

at ground level, approximately 12 feet from the side of the ASI building, and

the azimuthal antenna mount is positioned on top of an aerostand which is on

the roof of the ASI building. In this way, the field can be probed to a distance

approximately 30 feet from the plane of the aperture. The test probe is

restricted from rotating and kept on the boresight axis by the use of three.

nylon guide lines, which are fixed at the test antenna and to a ladder that

projects horizontally from the aerostand. The underside of the ladder is

covered with hairflex absorber to minimize reflections.

The test setup described above worked extremely well in

still air. However, even a moderate breese would cause the test probe to

oscillate, degrading the accuracy of the results. Therefore, all measure-

ments were made under calm conditions. In calm air, a run could be made

in a matter of seconds; this eliminated problems due to transmitter insta-

bility, allowed the repeatability of the test setup to be easily ascertained by

multiple runs, and facilitated the problem of making runs at several frequencies.
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Additionally, the existence of a continuous plot of on-axis power density

versus distance insured that the character of the on-axis field was faithfully

reproduced, and allowed the effect of reflections from the test probe and its

holding fixture to be ascertained.

A typical on-axis power density run is shown in Figure 17.

This run was made for a circular planar array made of five concentric rings

of crossed slots cut in a radial waveguide. (This antenna is discussed in

more detail in SectionfII. G. 4.) Probe reflections are evidenced in this curve

by the presence of a high frequency ripple. Inspection shows that the sepa-

ration between ripples is almost precisely one-half wavelength, as is ex-

* pected. Although the ripple has significant amplitude (as much as one decibel

for ranges greater than 1OX), the effect of the ripple is easily eliminated by

averaging the maximum and minimum values. Thus, the inaccuracies intro-

duced by probe reflections probably do not exceed *0.1 db with the test setup

employed. Such accuracy could not be obtained by probing the on-axis field

at discrete points.

2. Parabolic Reflector

T The parabolic reflector used in the current investigation

is shown in Figure 18. This figure also shows the pick-up probe, holding

fixture, and the nylon guide lines employed in the test setup. The parabola

is a four-foot Andrews dish, model number )4, and the feed is an Andrews

X-band button hook model number F4-71G. The E- and H-plane aperture

distributions, as deduced from primary feed pattern measurements, are

shown in Figure 19. The measurements were made at a frequency of 9.8 Gc

for which the dish diameter is 40X. It is worthy of note that the measured

distributions are highly tapered, the current at the edge of the aperture being

1! 77
I.



,~ -i -

-4

.4

-E11 H-

78



Iq

FP"

IFigure 18. Four-Foot X-Band Parabolic Dish

79



I I I I I I I I I

1.0

.9

.8

.7
* MEASURED E -PLANE

H DISTRIBUTION

z
.- .

MEASURED H-PLANE
*DISTRIBUTION

.4

.3 1 - 2 .59p 2 + 2.8 6 p -l.1 2 p

APPROXIMATION

00.1

0 2 4 6 8 10 12 14 18 20 22 24
RADIUS IN INCHES

Figure 19. Aperture Field of Four-Foot Parabolic Dish

80



I

116 to 17 db below that at the center of the aperture. The measurements

indicate that, except for the asymetries introduced by the presence of the

primary feed, the aperture distribution is very nearly circularly symmetric.

The theoretical and experimental curves of the on-axis field

.- distribution associated with the 40kXdish antenna are shown in Figure 20. It

-is seen that the curves agree reasonably well, except for the ratio of the

maxima to minima values in the region R/D < 3.5. The maxima are approx-

imately 2.5 db above the minima in the theoretical curve and less than I db

above the minima in the measured curve. However, the positions of the

maxima and minima agree quite closely as do the relative behavior of the

S- on-axis field distributions for R/D > 3.5.

- 3. Linear Array

To verify the line source computations, the on-axis field

of a linear array was measured and compared with the theoretical distribu-

tion as computed by Equation (70), in which 0 is set equal to zero. The

array is made of 40 longitudinal slots cut in the broad-wall of a rectangular

waveguide, and is pictured in Figure 21. The array is of the standing-wave

type and was designed for a uniform amplitude distribution. When tested,

it was placed in a ground plane whose dimensions are 25 by 39 inches. The

theoretical and experimental curves are shown in Figure 22. Agreement

between theory and experiment is very good except for a slight discrepancy

in the positions of the relative maxima and minima. The agreement is

*. particularly good in light of the fact that the theoretical curve is based on a

continuously-excited line source and the measurements were made on a line

source of discretely spaced elements.
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4. Circular Planar Array

To complete the experimental work, measurements were

made on a planar array made of five concentric rings of crossed slots cut

in a standing-wave radial waveguide. A complete description of this array
16

and the theory underlying its operation can be found in the literature. The

array is pictured in Figures 23 and 24. The spacing between adjacent annuli

is approximately one wavelength at the design frequency of 9375 Mc. Thus,

the radial distribution cannot be approximated by a continuous distribution.

However, it is seen that the spacing between crossed slots in a given annulus

is quite small (approximately X/2), and thus the azimuthal distribution can

be taken to be continuous.

Establishing the E10 standing-wave mode in the radial

waveguide results in a linearly-polarized aperture distribution, under the

condition that the radial positions of the annuli correspond to the roots of

the Bessel function 32 (kp). Under this condition, the excitation of each

annuli is proportional to JI(kpn)/(kpn). To obtain an in-phase distribution

the annuli corresponding to odd values of n must be omitted. Under these

conditions, and assuming the crossed slots to be infinitesimal and the azi-

muthal distribution to be continuous, the on-axis field is given by

I- F(R) Z J (kp2? ~k~~~ (72)
V nul I 4 2 2

n+ Pn

The theoretical curve of on-axis field, as computed by

Equation (72) is compared with the experimental curve in Figure 25. As in

the case of the linear array, the agreement is seen to be very good, except

for a slight discrepancy in the directions of the relative maxima and minima.
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I
I IV. CONCLUSIONS

f A number of conclusions can be drawn from the theoretical and exper-

imental portions of the study. The transition distance analysis has shown

that as the azimuthal angle increases the SNF tends towards the envelope of

the far field pattern. Thus the transition distance is dependent upon the

azimuthal angle as well as the aperture size, shape, and distribution. The

first null transition distance, which is the longest, depends upon the sidelobe

level and decay rate. The influence of the sidelobe level predominates. As

the level decreases from -15 db to -40 db, the transition distance increases

about fivefold. It varies from somewhat less than L /A to 5L2 /X ; the exact

values depending upon the sidelobe taper. As the taper increases from zero

to 8 db, the first null transition distance decreases by a factor of approxi-

mately one and one-half. The higher null transition distances are less de-

pendent upon both sidelobe level and taper. In fact, for azimuthal angles

that are large compared to the antenna's beamwidth, the transition distance

approaches L/sin 0, regardless of the sidelobe level and taper.

Comparisons of the SNF of unequally sized apertures (both circular

1and rectangular) have demonstrated that universal patterns of the SNF can

be constructed by considering a particular aperture size. This has allowed

Ta set of field components from which one can construct the SNF of apertures

that are arbitrary in both size and distribution, to be tabulated. The tables

T are presented in Volume II of this report. In the construction of the SNF,

only simple multiplicative and additive operations are required. Thus, no

T specialized equipment is necessary although a desk-type calculator can be

used to advantage.
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The formulation was based upon aperture distributions of the form
2 4 6

1 + alp + a 2 p + a 3 p , which are capable of closely approximating most

practical distributions. Similarities among the primary feed patterns of

most high gain paraboloidal-type reflectors has allowed a universal set of

aperture distribution parameters, a , to be determined as a function ofn

the aperture taper. Thus estimates of the SNF of high-gain reflectors

are easily obtained by the techniques developed. This is the case of most

practical importance.

The experimental results described above indicate that the scalar

near field formulation accurately describes the on-axis field of antennas

to ranges as short as one diameter. This implies that the spatial imped-

ance at that distance does not vary significantly from that of free space,

and justifies calculating the power by simply squaring the field value.

The measurements made upon the 40k paraboloidal antenna indicate

that approximating the aperture distributions of reflecting-type antennas

with functions of the form 1 + a + a 2 p4 + a 3 P allows accurate compu-

tations of the scalar near field. Further, the results indicate that the

aperture distribution can be correctly deduced from primary feed pattern

measurements.

Finally, the measurements on the array-type antennas show that the

near field of antennas can be accurately calculated by a scalar formulation

under the conditions that the aperture field is accurately known. Also,

these results show that to within experimental error, the scalar near field

of a continuous aperture is very similar to that of the corresponding discrete

*aperture.
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V. RECOMMENDATIONS FOR FUTURE RESEARCH

Outlined below are several research areas which American Systems

Incorporated feels should be pursued in connection with the study of the

interference aspects of Fresnel region phenomena. Additionally, an approach

to each study area is recommended.

A. Determination of the scalar near field (SNF) of elliptical aper-

tures producing shaped beams in one plane: The SNF analysis must be

extended to include the effect of the elliptical shape and the presence of a

nonuniform phase distribution across the aperture which gives rise to di-

verging rays. Conceptually these factors present no great difficulty, since

they merely modify the form of the scalar near field integral. By generaliz-

ing the results of the analyses discussed in Section III. C. 4 entitled, "Uni-

versal Patterns", it can be concluded that only one or two antenna sizes

need be considered to obtain results which can be extrapolated to all sizes

of interest. Thus this portion of the study can be adequately performed by

theoretically investigating a limited number of special cases. It is felt that

experimental verification should be obtained by performing measurements

on at least one operational antenna of the Air Force's choosing.

B. Determination of the SNF of monopulse antennas: The SNF of

monopulsed rectangular apertures can be obtained by a formulation identical

to that derived in the present study, providing the aperture distribution

function is appropriately modified. To obtain the SNF of circular apertures

additional modification is necessary, however, since the aperture distribu-

tion function is no longer circularly symmetric. The modification is

straightforward, however, requiring only minor modifications to the com-

puter program. Thus, the scalar near field of monopulsed antennas, both
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rectangular and circular, can be analysed by straightforward extensions of

the SNF formulation.

C. Spurious frequency response of antennas: The spurious fre-

quency analysis initiated under the present contract should be extended to

include a more detailed analysis of the frequency characteristics of the

primary feed, and thus a more accurate description of spurious frequency

aperture distribution. Where possible, experimental data on the harmonic

distribution of energy should be used. Additionally, experimental work

should be performed, and if possible on operational antennas.

D. Far field measurements in the near field: The single lens

design described in Section III. F should be extended to a double lens design

which will allow the amplitude variations to be undisturbed in the presence

of the lens, while focusing the aperture at a finite range. The feasibility

of this approach should be verified experimentally. Additionally, signal

processing antenna ranges which permit far field measurement in the near

field should be investigated.

E. Aperture field to scalar near field transition distance: A

theoretical and experimental investigation which delineates the transition

distance between the aperture field and the scalar near field is required to

definitely establish the limits of validity of the scalar near field formula-

tion. The theoretical investigation would proceed by investigating the dif-

ferences in the field predicted by vector and scalar formulations, and by

determining the radial components of field. Experimental work would allow

a comparison of the measured field with that calculated by the scalar formu-

lation and allow measurements of the radial components.

19
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F. Electrically-scanned arrays: The effect on the SNF of a linear

phase slope should be investigated by procedures similar to those used in

the in-phase case.

G. Antenna-to-antenna coupling: A theoretical investigation of the

near field coupling of energy between antennas should be pursued.

H. Terrain reflections: The problem of terrain reflections is best

investigated by a modeling approach. One simple approach is to investigate

the disturbance of the on-axis field by varying the antenna height above the

ground.

I. Measurement Program: The results of the theoretical work

should be verified by off-axis scalar near field pattern measurements in

addition to the on-axis measurements made in compliance with the present

contract.

19
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APPENDIX I

ASYMPTOTIC REPRESENTATION OF
THE TRANSITION DISTANCE

For a linear antenna whose aperture distribution is JoiC 0-P 7)

the transition distance can be written as

-KR 'y3/2,n X2 I C 4  ) Co. ( n+) dx (I-i)
L2 -4 (sin Y3/2,n) J 0

For n large, the following approximations are valid

2
c co(n ix + Vn x u coo (nwx) - M sin (nwx) (1-2)

Zn 2n

Using Equation (1-2), Equation (1-1) is divided into two integrals, each of

which may be integrated repeatedly by parts, as follows

x 2: Xa0 WCZ x 2 coo (nix) dx 2 [1 (C4T x') sin (nwx) J
+2I d 2o (n cos) dwx=

+[ d[ ( w____ c
" dx (nli)

94 5 4 [I(C T . ,(-3)
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The forst term on the right of Equation (1-3) vanishes by virtue of the

limits and the contribution of the remaining integral is small for small

n. Therefore,

51 22[;i
(nwl)

-[x r~ + x2 ?rC -Zx I ~C o (nirx)

2 - C Li rz 
_)

x--'l r2

Nl-x (nwt

1 2

2 -1 (wC)
2

n 2

(nir) 2

Similarly,

W2 J1 31 W)2

- n 0~- Jw K~ x2T~ sin (nix) dx ()nl (C 2 (-5
- n2(nw)
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From Equations (1-4) and (1-5) the transition distance becomes

KXR1 _ _n_ 3/2,n

2n 7nr (hin Y3 /, n)

But ~3Znis the n throot of 3 (x) and for n large, 23/ n +
-y3/2,n 3/2 Y/,

also, sin 0-y3/2,n) = n ,therefore

KR 2n + II 6

L 4n2

which is the desired answer.
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APPENDIX II

PROGRAM FOR THE EVALUATION OF J (x)

To numerically evaluate J (x) for large values of Y, the x - v plane
V

has been divided into seven regions as shown in Figure 26. In region (a),

the phase amplitude method of Goldstein and Thaler 1 9 has been used. This

has allowed the numerical evaluation of the Bessel.functions for orders of

50 and less, and for arguments of 50 or less.

In region (b), in which v > 50 and x/v S 1.5, asymptotic formulations

valid for large orders and arguments have been used to evaluate J (x). The

equations used are Equations (3), (5), and (6) of article 4. 35. 1, page 87 of

Reference 20. In region (c), values were obtained by recursing forward

(i. e. , increasing v ) from region (b). The forward recursion was accom-

plished with facility to values of x/v > 1.2. For x/Y < 1.2, the Bessel

function becomes small (although not negligible) and the forward recursion

technique loses accuracy. To overcome this difficulty a formulation valid

in the immediate vicinity of x = Y was used to determine J (x) in the nar-

row strip v - I _e x < v + 1. This formulation is given by Equations (1), (3),

(4), and (5) of article 4. 34. 2, pages 87 through 88 of Reference 20. Using

the values thus obtained, values in region (d) were obtained by backward re-

cursion, and values in region (e) by forward recursion. With a knowledge

of the correct values in region (e), the ratio method was used to determine

the values in region (f).21,22 This method involves assuming a value in a

region in which the Bessel function is not known [region (g, applying the

recursion formulas backward to a region in which the correct answer is

known, and comparing the obtained results with the known value. In region
-10(g), 3r(x) < 10 and is neglected.
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